Changes

Jump to navigation Jump to search
Line 379: Line 379:  
* Ein planarer linearer Ring <math>R_s</math> definiert den Rand eines Polygons <math>S</math> (äußerer Ring).
 
* Ein planarer linearer Ring <math>R_s</math> definiert den Rand eines Polygons <math>S</math> (äußerer Ring).
 
* Ein Polygon ist durch genau einen solchen äußeren Ring und <math>n\ge0</math> innere Ringe definiert. Jeder innere lineare Ring muss ebenfalls planar sein, und der äußere und alle inneren linearen Ringe müssen in derselben Ebene (im Rahmen einer gegebenen Toleranz) liegen.
 
* Ein Polygon ist durch genau einen solchen äußeren Ring und <math>n\ge0</math> innere Ringe definiert. Jeder innere lineare Ring muss ebenfalls planar sein, und der äußere und alle inneren linearen Ringe müssen in derselben Ebene (im Rahmen einer gegebenen Toleranz) liegen.
* Jeder innere lineare Ring muss innerhalb des Gebiets der Ebene liegen, das der äußere Ring begrenzt.
+
* Jeder '''innere''' lineare Ring '''muss innerhalb des Gebiets''' der Ebene liegen, das der '''äußere''' Ring begrenzt.
 +
 
 +
 
 
* Die inneren linearen Ringe dürfen nicht verschachtelt sein, d.h. kein innerer Ring liegt in dem Gebiet der Ebene, das ein anderer innerer Ring definiert.  
 
* Die inneren linearen Ringe dürfen nicht verschachtelt sein, d.h. kein innerer Ring liegt in dem Gebiet der Ebene, das ein anderer innerer Ring definiert.  
 
* Die inneren Ringe und der äußere Ring dürfen sich paarweise in endlich vielen Punkten berühren. Dabei muss das Innere  des Polygons zusammenhängend sein.  
 
* Die inneren Ringe und der äußere Ring dürfen sich paarweise in endlich vielen Punkten berühren. Dabei muss das Innere  des Polygons zusammenhängend sein.  
Line 437: Line 439:  
</table>
 
</table>
    +
== <span id="CompositeSurface"> [http://www.schemacentral.com/sc/niem21/e-gml32_CompositeSurface.html gml:CompositeSurface]</span>==
   −
==gml:CompositeSurface==
+
Eine CompositeSurface ist eine Menge <math>C=\lbrace S_1,S_2,...,S_n \rbrace</math> von Polygonen, für die
 +
folgendes gilt:
    +
# Die Schnittmenge zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  ist entweder leer oder besteht nur aus Punkten und/oder Kanten, die auch in den beiden linearen Ringen vorkommen. Bezeichne <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math>  den planaren linearen Ring, der das Polygon <math>S</math> definiert. Dann gilt:<br><math>S_i \cap S_k= \begin{cases}\emptyset\\ \lbrace Q_0,Q_1,...,Q_m\rbrace,Q_j=P_k^i\\ \lbrace e_0,e_1,...,e_m\rbrace,e_j=\overline{P_i^kP_{i+1}^k} \end{cases}</math>
 +
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird höchstens  einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
 +
# Die Polygone aus <math>C</math> sind so orientiert, dass die Flächennormale benachbarte Polygone in dieselbe Richtung zeigen.
 +
# Die Vereinigung aller Polygone aus <math>C</math> ohne die Kanten oder Punkte, in denen sich die Polygone berühren, ist isomorph zu einem Polygon.
    +
Aus (1) und (2) ergibt sich, dass die Oberfläche, die durch  <math>C</math>  beschrieben wird, keine sich gegenseitig überlappenden oder durchdringenden Polygone enthalten darf (Polygone berühren sich höchstens in Punkten oder Kanten).
    
== <span id="Solid"> [http://www.schemacentral.com/sc/niem21/e-gml32_Solid.html gml:Solid]</span>==
 
== <span id="Solid"> [http://www.schemacentral.com/sc/niem21/e-gml32_Solid.html gml:Solid]</span>==
Line 450: Line 459:  
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird genau einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
 
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird genau einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
 
# Die Polygone aus <math>C</math>  sind so orientiert, dass die Flächennormalen nicht ins Innere des Festkörpers zeigen, sondern nach außen.
 
# Die Polygone aus <math>C</math>  sind so orientiert, dass die Flächennormalen nicht ins Innere des Festkörpers zeigen, sondern nach außen.
# Die Polygone aus <math>C</math>  sind zusammenhängend, d.h. in dem dualen Graphen von  <math>C</math> gibt es einen Weg, der alle Knoten umfasst. Der duale Graph G<sub>C</sub> =(V<sub>C</sub>, E<sub>C</sub>)</math> von <math>C</math>  besteht aus einer Menge V<sub>C</sub> von Knoten und einer Menge E<sub>C</sub> von Kanten. Jeder Knoten v aus V<sub>C</sub> repräsentiert genau ein Polygon aus <math>C</math> . Eine Kante zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  wird in G<sub>C</sub> durch eine Kante <math>e=(v_{s_k},v_{s_l})</math> in E<sub>C</sub> dargestellt.
+
# Die Polygone aus <math>C</math>  sind zusammenhängend, d.h. in dem dualen Graphen von  <math>C</math> gibt es einen Weg, der alle Knoten umfasst. Der duale Graph G<sub>C</sub> =(V<sub>C</sub>, E<sub>C</sub>) von <math>C</math>  besteht aus einer Menge V<sub>C</sub> von Knoten und einer Menge E<sub>C</sub> von Kanten. Jeder Knoten v aus V<sub>C</sub> repräsentiert genau ein Polygon aus <math>C</math> . Eine Kante zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  wird in G<sub>C</sub> durch eine Kante <math>e=(v_{s_k},v_{s_l})</math> in E<sub>C</sub> dargestellt.
 
# Für jeden Punkt <math>P</math>, der in einem linearen Ring eines Polygons aus <math>C </math> vorkommt, gilt: Der Graph <math>G_P =(V_P, E_P)</math>, der aus Polygonen und Kanten gebildet wird, die <math>P</math> berühren, ist zusammenhängend. Dabei repräsentiert jeder Knoten <math>v</math> aus <math>V_P</math> genau ein Polygon, dessen linearer Ring <math>P</math> enthält. Zwei Knoten sind genau dann mit einer Kante <math>e</math> aus <math>E_P</math> verbunden, wenn die Polygone, die durch die Knoten repräsentiert werden, eine gemeinsame Kante haben, die <math>P</math> berührt .
 
# Für jeden Punkt <math>P</math>, der in einem linearen Ring eines Polygons aus <math>C </math> vorkommt, gilt: Der Graph <math>G_P =(V_P, E_P)</math>, der aus Polygonen und Kanten gebildet wird, die <math>P</math> berühren, ist zusammenhängend. Dabei repräsentiert jeder Knoten <math>v</math> aus <math>V_P</math> genau ein Polygon, dessen linearer Ring <math>P</math> enthält. Zwei Knoten sind genau dann mit einer Kante <math>e</math> aus <math>E_P</math> verbunden, wenn die Polygone, die durch die Knoten repräsentiert werden, eine gemeinsame Kante haben, die <math>P</math> berührt .
  

Navigation menu